THE TEAM - About Us SUBMISSIONS Email US Text & Voicemail
Privacy Policy Terms of Service

Gab Social Gettr Twitter Youtube Facebook RSS
Blacklisted Listed News Logo
Menu - Navigation
Menu - Navigation

Cited Sources

2nd Smartest Guy in the World
2nd Amendment Shirts
10th Amendment Center
Aaron Mate
Activist Post
Aletho News
Alliance for Natural Health, The
Armstrong Economics
Ben Bartee
Big League Politics
Black Vault, The
Brandon Turbeville
Breaking Defense
Brownstone Institute
Burning Platform, The
Business Insider
Business Week
Caitlin Johnstone
Campus Reform
Charles Hugh Smith
Children's Health Defense
Citizen Free Press
Citizens for Legit Gov.
CNN Money
Collective Evolution
Common Dreams
Conscious Resistance Network
Corbett Report
Counter Signal, The
Daily Bell, The
Daily Reckoning, The
Daily Veracity
Dark Journalist
David Haggith
Defense Industry Daily
Defense Link
Defense One
Dennis Broe
Dr. Robert Malone
Drs. Wolfson
Drudge Report
Economic Collapse, The
Electronic Frontier Foundation
Ellen Brown
Emerald Robinson
Expose, The
F. William Engdahl
Farm Wars
Faux Capitalist
Foreign Policy Journal
Foundation For Economic Freedom
Free Thought Project, The
From Behind Enemy Lines
From The Trenches
Future of Freedom Foundation
Geopolitical Monitor
Glenn Greenwald
Global Research
Global Security
Grayzone, The
Great Game India
Guadalajara Geopolitics
Helen Caldicott
Homeland Sec. Newswire
Human Events
I bank Coin
Information Clearing House
Information Liberation
Insider Paper
Intel News
Intercept, The
Jay's Analysis
John Adams
John Pilger
John W. Whitehead
Jonathan Cook
Jon Rappoport
Jordan Schachtel
Just The News
Kevin Barret
Last American Vagabond, The
Lew Rockwell
Le·gal In·sur·rec·tion
Libertas Bella
Liberty Unyielding
Market Oracle
Market Watch
Maryanne Demasi
Matt Taibbi
Medical Express
Michael Snyder
Michael Tracey
Middle East Monitor
Mike "Mish" Shedlock
Military Info Tech
Mind Unleashed, The
Mint Press
Mises Wire
Money News
Moon of Alabama
My Budget 360
Naked Capitalism
Natural News
New American, The
New Eastern Outlook
News Deck
Nicholas Creed
Oil Price
Organic Prepper, The
Phantom Report
Pierre Kory
Political Vigilante
Public Intelligence
Reclaim The Net
Richard Dolan
RTT News
Rutherford Institute
Shadow Stats
Slay News
Slog, The
South Front
Sovereign Man
Steve Kirsch
Strange Sounds
Strike The Root
Summit News
Tech Dirt
Technocracy News
Techno Fog
Terry Wahls, M.D.
Tom Renz
True Activist
unlimited hangout
Unreported Truths
Unz Review, The
Vigilant Citizen
Waking Times
Wall Street Journal
Wallstreet on Parade
Wayne Madsen
What Really Happened
Whitney Webb
winter oak
Wolf Street
Zero Hedge

SDG7: The Impossible Energy Transformation

Published: January 10, 2023 | Print Friendly and PDF

The alleged purpose of the United Nation’s (UN’s) Sustainable Development Goal 7 (SDG7) is to “ensure access to affordable, reliable, sustainable and modern energy for all.” The real impacts of its implementation couldn’t be more different. Renewable energy is neither renewable nor sustainable and the SDG7 energy transition is only making the problem of energy poverty worse.

The alleged purpose of the United Nation’s (UN’s) Sustainable Development Goal 7 (SDG7) is to “ensure access to affordable, reliable, sustainable and modern energy for all.” In keeping with Agenda 2030, the target date to achieve this goal is, as you might expect, 2030.

As previously discussed, UN documents are couched in fluffy rhetoric. The disarming verisimilitude of compassion and concerned stewardship is thickly layered in UN texts, resolutions and announcements. This obscures the unpalatable aspects of “sustainable development.” We must look beyond what has been said to what is being done if we are to understand the strategic thinking that lies beneath the announced agendas.

The UN Department of Social and Economic Affairs (UNDESA) undertook a consultation to provide a summary report for its 2021 High-Level Dialogue on Energy. The report clearly identified the most significant obstacles to be overcome:

Inequality and poverty prevent access to affordable, reliable, and sustainable energy. [. . .] [E]nergy access follows the tangible geographical disparities, with greater infrastructure development being carried out in urban settings rather than rural. [. . .] Stakeholders emphasized that extreme poverty could not be eradicated without ending energy poverty. [. . .] [G]overnments and investors often-times focus on economic viable areas, where they can make huge profit [. . .] creating severe gaps in providing reliable infrastructure to ‘unprofitable’ locations. These disparities are clear on the international horizon, with unattractive economies being excluded from the investment chain of sustainable and reliable energy. [. . .] Research must expand beyond its focus on specific technologies to explore the role of small-scale, decentralized and off-grid renewable energy solutions.

The subsequent UN High Level Dialogue on Energy and their implementing stakeholder partners are under no illusions. They know full well what the problems are. They know, too, where the global efforts they claim to be leading should focus if their loudly declared humanitarian concerns are to have any credibility. UN Secretary-General António Guterres concluded:

[W]e have a double imperative. [. . .] To end energy poverty and to limit climate change. And we have an answer that will fulfil both imperatives. Affordable, renewable and sustainable energy for all.


Inequality of opportunity, endemic poverty and energy poverty are interdependent at both the local and international scale. Resolving these problems is indivisible from any authentic attempt to transition to “sustainable and modern energy.” 

Yet, when we look more closely at the UN stakeholder partnership’s efforts to meet SDG7, we find that, far from addressing the problems that restrict access to energy resources, they are actually exacerbating these problems with their so-called sustainable development of energy. For, despite their claims, they make no real commitment to “ensure access to affordable, reliable, sustainable and modern energy for all.”  

Affordable Energy?

There is some debate about the precise meaning of “sustainable development.” Many people point to the definition provided in the 1987 Brundtland Report: Our Common Future:

Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. It contains within it two key concepts. The concept of ‘needs,’ in particular the essential needs of the world’s poor, to which overriding priority should be given; and the idea of limitations imposed by the state of technology and social organization on the environment’s ability to meet present and future needs.

Based on that definition, we can say that the alleged purpose of “sustainable development” is to prioritise meeting the current needs of the world’s poorest while ensuring that their future needs aren’t compromised. All forms of global development and policy design—technological, economic, financial, industrial—must be directed towards this end, all the while protecting the environment for both current and future generations.

The Brundtland Report (Our Common Future) provides perhaps the fullest definition of “sustainable development.” Source: https://fossilfreearoundtheworld.org/

But when we look at the effects of the alleged “sustainable development” policies enacted to date by the global political and corporate class, there is nothing to suggest any determination by our “leaders” to live up to this otherwise worthy aspiration. In short, this concept of “sustainable development” amounts to some nice-sounding words, written in impressive-looking reports, and nothing more.

Thus, as economies around the world face the worrying impact of soaring energy prices, it appears that the UN is a long way from achieving SDG7. That is, if you assume its genuine objective is to ensure access to affordable energy for all. For, as things stand, the vast majority of people in developed nations can ill-afford today’s energy prices. And the prospect of “affordable” energy coming within reach of people in developing nations appears to be extremely remote.

The United States Agency for International Development (USAID) estimates that two out of every three people living in sub-Saharan Africa have no access to electricity. In April 2022, the executive director of the Africa Coalition for Sustainable Energy Access (ACSEA), Dr. Augustine Njamnashi, pointed out that the alleged problem of reliance upon what is called “dirty energy”—the burning of fossil fuels—is secondary to the more pressing problem of energy poverty:

 [M]any families do not have access to any form of energy, whether clean or dirty.

It is doubtful, however, that simply introducing a higher proportion of renewable—green—energy into the existing grid infrastructure will do anything to reduce energy poverty. This is especially true in light of the fact that renewable energy has so far appeared to be both more expensive and less reliable than so-called “dirty energy.”

Currently, the poorest half of the world’s population consumes just 20% of the global energy supply. In fact, the poorest half accounts for less energy consumption than the wealthiest 5% of people on earth. 

Interestingly, this energy consumption inequality is remarkably consistent. Whether measured in terms of the disparity between rich and poor nations or as the varying levels of energy use within any nation-state, the top 10% consume roughly 20 times more energy than the bottom 10%.

Despite allegations of corruption levelled at government subsidies for fossil fuels, the problem of energy poverty would be considerably worse without them. Nonetheless, as Dr. Njamnashi observed:

The governance around the dirty energy is dirty in itself. If we don’t get the governance right, we can end up with energy from renewable resources whose participation or access and distribution are still laced with a dirty system.

Globally, energy poverty could potentially be alleviated to a degree if the investment were made to construct modern and efficient micro power plants in the currently disconnected regions. A system of local, decentralised power generation would also redistribute economic growth and almost certainly reduce overall poverty and wealth inequality. If the people in these communities had access to the necessary resources, they could create this “sustainable” system of accessible, affordable energy themselves.

If affordable access to “clean energy” for all really is the objective of SDG7, as is claimed, then we should be witnessing significant efforts to decentralise generation and localise energy supplies

But that is not what’s happening. Instead, investment in energy distribution is predominantly being channelled into the development of the “smart grid.”  We are told that the smart grid will be cheaper, more efficient, better able to manage peak demand, and so on. 

Even if this were true, it is not clear how introducing smart grid technology into the existing grid distribution network will address energy poverty. Yet the “sustainable development” of energy is a key objective of SDG7.

The International Energy Agency (IEA)—an intergovernmental organisation established in 1974 by the Organisation for Economic Co-operation and Development (OECD)—has this to say about the level of investment needed to attain the SDG7 targets:

Investment in capital-intensive clean power and electricity networks [. . .] would need to more than triple in EMDEs [emerging markets and developing economies] [. . .] and increase more than six times in order to keep the door open for a 1.5 °C stabilisation. [. . .] Enabling universal access to electricity by 2030 requires investment of $35 billion per year, with half of that for decentralised solutions including $13.5 billion in sub-Saharan Africa.

The IEA notes that nearly all investment in ensuring “access to affordable, reliable, sustainable and modern energy” is being made in a handful of developed and rapidly growing economies. Investment in infrastructure projects, electric vehicles, renewable power generation and improved battery storage capacity has mainly been directed toward the US, Europe and, in particular, China:

Renewable investment has thrived in markets with well-established supply chains where lower costs are accompanied by regulatory frameworks that provide cash flow visibility. [. . .] Much of the spending resilience in 2020 was concentrated in a handful of markets, most notably the People’s Republic of China.

The IEA then observes:

In contrast to advanced economies and China, investment in emerging market and developing economies (EMDEs) is set to remain below pre-crisis [Covid-19] levels in 2021 [. . .] EMDEs outside China account for nearly two-thirds of the global population but [. . .] just one-fifth of clean energy investment.

As if the IEA’s assessment isn’t worrisome enough, consumers in developed nations are also being forced to pay higher energy prices in order to accommodate the move toward alleged renewable energy. The people of Germany, for example, have paid an additional surcharge to fund its “energy transition” for years.

This impact of increasing energy prices is felt most acutely by the poorest and the vulnerable, especially retirees. There is no indication that these higher prices will decrease once the “energy transition” is complete.

From a global investment and national policy standpoint, there is no evidence of any intention to “ensure access to affordable, reliable, sustainable and modern energy for all.” Energy poverty is set to continue. “Sustainable development” efforts supposedly intended to reduce energy poverty are not only useless, they are actually worsening it.

Reliable Energy?

Presently, renewable energy is incapable of fully powering either manufacturing or any other “energy-intensive” industry in any country. European renewable energy manufacturers are temporarily closing or abandoning their production facilities because of increased energy prices. One such example is Rystad Energy, which makes solar panels. 

In an industrial setting, energy intensity can be defined as “energy consumed per unit of gross output.” The problem is, products made by Rystad Energy and other European manufacturers of solar panels and wind turbines cannot generate the consistent energy intensity they need. They can’t even generate enough renewable energy to meaningfully subsidise the energy cost of their own production lines.

Here’s how Rystad Energy’s head of energy service research, Audun Martinsen, puts it:

High power prices [. . .] pose a significant threat to European decarbonization efforts[.] [. . .] Building a reliable domestic low-carbon supply chain is essential if the continent is going to stick to its goals, including the REPowerEU plan, but as things stand, that is in serious jeopardy.

REPowerEU is the EU Commission’s so-called “plan” to address the problem of energy supply chain disruption that the Commission claims was caused by Russia’s war in Ukraine. 

Such a claim is disingenuous. It is much more likely that the significant reduction and potential severing of energy supplies from Russia is predominantly the result of the EU’s participation in the US-led sanctions regime imposed upon the Russian government. And even beyond the effects of those sanctions and the Russian government’s response to them, the fact is that the heightened level of disruption to European energy supplies is largely the result of a deliberate EU policy commitment.

The EU hierarchy decided to participate in sanctions while fully acknowledging Europe’s overwhelming reliance upon Russian energy. Russia meets nearly a quarter of the EU’s total primary energy requirements. Primary energy is the energy source in its unrefined extracted state, such as crude oil, natural gas, wind or solar radiation.

In other words, the EU’s political class was prepared to take an enormous risk with the lives of every European citizen in order to oppose Russia’s military intervention in Ukraine. Apparently some consider putting lives at risk a price worth paying. There have been a number of large demonstrations across Europe by those who don’t agree.

Yet the risk of halting Russia’s traditional energy supply to Europe is nothing compared to the risk of transitioning to supposedly “reliable” renewable energy.

The European energy problem predates the war in Ukraine. Thus far, the rush to transition to renewable energy has been fraught with difficulties.

For example, the German government’s pursuit of its Energiewende (energy transition) policy has both significantly increased the cost of energy to the German consumer and undermined the country’s energy security. The recent Russian supply issues have exacerbated an existing problem.

Having started Energiewende in earnest in 2013, the German government has since spent somewhere in the region of €220 billion, and at least another €450 billion of German taxpayers’ money is needed to make the full transition. To be honest, though, no one is really sure what it will ultimately cost to complete the process. For instance, in 2018, the German Federal Government admitted that the actual cost was “not known to the government.” It would seem no price is too high to pay for “sustainable development.”

Currently, the renewable energy share of Germany’s domestic energy mix is said to be 31% of total energy consumed. Unfortunately, renewable energy sources are unreliable. Energiewende has left the German populace facing grid instability and Germany currently struggles to generate sufficient energy in the winter.

In the winter of 2021, for example, Berlin was teetering on the edge of blackouts and the loss of much-needed heating for homes. Its remaining coal-fired power station in Lausitz was running at peak load throughout the cold period. There was no spare capacity in the grid. For, instead of the requisite wind and clear skies, it was a windless and either snowing or heavily overcast winter.

Professor Harald Schwarz, a specialist in power distribution at the University of Cottbus, observed:

With this supply of wind and photovoltaic energy, it’s between 0 and 2 or 3 percent – that is de facto zero. [. . .] [W]e have days, weeks, in the year where we have neither wind nor PV [photovoltaic energy- solar]. Especially this time [winter,] for example. [. . .] These are things, I must say, that have been physically established and known for centuries, and we’ve simply totally neglected this during the green energies discussion.

In order to meet the country’s basic energy needs, the German government had to reopen, at considerable additional expense, the coal-fired power plants it had previously closed. One effect of the re-emerging German demand for coal was that the energy company RWE dismantled its wind farm near the town of Lutzerath in order to expand its Garzweiler coal mine.

Most energy analysts acknowledge that any significant reduction in the use of fossil fuels for energy generation will necessitate a corresponding increase in the use of nuclear power. Thus, it is hard to understand why Energiewende has committed Germany not only to the elimination of coal plants but also to a notable reduction of nuclear power.

Given that its objective is ostensibly to reduce CO2 emissions, other aspects of Energiewende policy make no sense either. For instance, last April German Vice Chancellor and Federal Minister for Economic Affairs and Climate Action Robert Habeck announced amendments to Germany’s Renewable Energy Sources Act (EEG). The “Easter Package” of reforms amazingly commits Germany to move toward 80% renewable power generation by 2030.

That decision was made regardless of the fact that in March 2021 the German Federal Court of Auditors issued a report warning of the dangers of continuing the “energy transition.” That report came out more than a year before the Easter Package and nearly a year before the Russian military campaign in Ukraine and the imposition of sanctions.

The REpowerEU is the European action plan for energy. Source: VPSolar

The March 2021 report urged the German government to recognise that the pursuit of alleged “sustainable development” was not only increasing the cost of energy for the poorest German households and small-to-medium-size German businesses but was also endangering the country’s ability to generate the reliable power it needs to function. 

In that same report, the president of the Federal Audit Office, Kay Scheller, wrote:

Since our last balance sheet in 2018, too little has happened to successfully shape the energy transition. [. . .] The Federal Court of Auditors sees the danger that the energy transition in this form endangers Germany as a business location and overwhelms the financial capacity of the companies and private households that consume electricity.

Sobering words. But they went unheeded. The result: an energy crisis for most of Germany.

Still, not everyone lost out. German multinational corporations benefited handily. As reported by Clean Energy Wire, an outlet supported by the European renewable energy lobby:

[. . .] the roll-out of renewable energies on a huge scale has had two opposite effects on power prices in Germany. On the one hand, cheap renewable electricity flooded the power market, pushing down wholesale power prices. This mainly benefits large and energy-intensive industrial companies, because many can basically source their electricity at wholesale prices. On the other hand, the capital-intensive deployment of renewables pushed up power prices for everybody else.


The Green Hydrogen Conundrum

One of the German politicians’ “Easter Package” solutions to the very “green” energy insecurity it has created is to step up the use of biomass power plants. This means diverting agricultural food production to primary energy production during a global food crisis.

Scientists at Imperial College London (ICL) have produced the models to assure European Union and UK policy makers that there is plenty of “sustainable biomass potential availability in the European Union.” They suggest that this could be used to fuel the transport sector on a continental scale. (Aside: Keep in mind that ICL includes the MRC Centre for Global Infectious Disease Analysis, which produced the wildly inaccurate predictive model that led to unjustified alarm about COVID-19.)

Biomass is supposedly a “green” primary energy source. But the calculations that this supposition is based upon fail to account for the energy cost of growing the agricultural crops (corn, soybeans, sugar cane, etc.) and of harvesting, transporting and ultimately converting the crops into a usable biofuel. When these energy costs are added, biomass energy has a greater “carbon footprint” than the equivalent fossil fuel.

In order for ICL to make a claim that biomass is a “sustainable energy source,” it has to assume that the energy required to convert biomass to a usable fuel will also be “sustainable” in the form of “renewable hydrogen.” The production of this so-called “green hydrogen” is created by the electrolysis of water, which uses electricity drawn from renewable energy sources, such as solar panels or wind turbines.

In ICL’s computer models, the “renewable” low-carbon hydrogen is used to fuel “advanced bio-fuel thermochemical conversion technologies” to convert the harvested biomass into a biofuel from which to power Europe’s entire transport network. 

All of which poses a conundrum.

ICL appears to be suggesting that the electricity generated by wind and solar can produce enough “renewable hydrogen” to manufacture the biofuel that will provide Germany, the UK and the rest of Europe with the fuel needed to power all cars, vans and lorries. Unlike Germany and other EU states, the UK has committed to a fleet of Electric Vehicles (EVs) instead of biofuelled vehicles. Presumably the suggestion is that either the hydrogen or the resultant biofuel will produce electricity for its new EV transport network.  

Why not just use the electricity generated by wind and solar to charge EVs directly and avoid starvation (caused by the transfer of crops from food to fuel) as well as the cutting down of trees needlessly? 

The reason for these various workarounds is that renewable energy, in the form of solar, hydroelectric or wind energy, cannot possibly meet the UK’s or  Germany’s or any other nation’s energy requirements. 

As we shall see, EVs are not a viable transport network option. And, despite its reassuring models, ICL’s plan, likewise, almost certainly won’t work.

The Energy Density Problem

The first problem is lack of energy density. Energy density is “the amount of energy that can be stored in a given system, substance, or region of space.” While biofuels, especially biodiesel, are among the most energy-dense forms of supposedly “green” energy sources, they are not as energy dense as fossil fuel alternatives.

The heat required for thermochemical conversion to make biofuels has to come from an energy-dense source. Manufacturing solar panels requires similar energy density, which is why companies like Rystad Energy can’t sustain production using “renewable energy.”

Hydrogen is an energy-dense source, but solar, wind and other forms of “renewable” electricity generation have extremely low energy density. It is doubtful that sufficient “renewable hydrogen” could be produced to provide the energy required for the thermochemical conversion of biofuels on anything like the scale needed.

And yet, at the UN’s recent 27th Conference of Parties (COP27), the deceptively named “green hydrogen,” promoted as a “low-carbon” energy dense fuel source by ICL and others, was a centrepiece of the discussions: 

Hydrogen has been identified as the potential energy source for the future, with an increasing focus from all stakeholders on Hydrogen, in particular Green Hydrogen. [. . .] Hydrogen is the most abundant chemical element in the world and is considered as one of the main enablers to achieve the net zero transformation. [. . .] 90 Mt (million metric tonnes) of hydrogen are produced annually, mainly from natural gas. Less than 0.5% of this hydrogen was produced from renewable electricity in 2020. 

In order to meet just the current demands for hydrogen, using nothing but “green hydrogen,” there would need to be a two-hundredfold increase in “renewable energy” devoted solely to its production. 

On top of that, if “green hydrogen” is going to power the thermochemical processes to produce sufficient biofuels needed for a “reliable” continental transport networks across the globe, the increase in solar, hydro and wind generation that would be necessitated is almost incalculable. 

Blue and Green Hydrogen are seen as key to our proposed sustainable energy future.

If measured in Watts per square meter (W/sq.m), modern homes in developed nations require—depending on load demand—somewhere in the region of 20 to 100 W/sq.m. By comparison, industrial and manufacturing processes require 300 to 900 W/sq.m.

A high-quality monocrystalline solar panel, operating at approximately 15%–20% efficiency, can generate up to 150 W/sq.m.—but only on a really sunny day. If it’s cloudy or dark, the panels don’t work at all. Yet sunless days and nights, especially in winter, are when most people in Europe need more energy, not less.

Wind power is equally intermittent and unreliable. It can generate up to 250 W/sq.m when it’s windy. Modern wind turbines don’t generate sufficient power from a wind speed below 25mph. But it can’t be too windy. The turbines have a shut-off mechanism that is triggered when the wind reaches 55mph. That constitutes a gale on the Beaufort scale. Wind turbines risk mechanical and structural failure beyond that point.

Broadly speaking, such renewables produce electricity between 10% and 30% of their functional lifespan. This unstable power fluctuation from renewables regularly results in some regions—the State of California, for example— having to shut down solar capacity at peak times. In the case of California, it has to pay other states to disperse its excess energy through their grids in order to avoid overloading its own. 

Just as in Germany, these problems with inconsistent power, combined with the investment subsidies, have seen the cost of energy to Californian consumers increase dramatically.

The designed lifespan of wind turbines is 20 – 25 years.

The Energy Storage Problem

The second problem, which arises only when it is sunny or the wind speed is perfect, is how to store any resultant energy surplus. 

If, for example, California ever achieves its goal of sourcing 80% of its energy from “renewables,” then at peak times renewables would need to be able to disperse  9.6 million megawatt-hours of surplus energy. 

Germany’s “Easter Package” ensures that it will face the same complication during peak hours, but on a much larger scale than in California.

Uncontrollable surges in energy use caused blackouts and the loss of essential air conditioning during the height of the Californian summer in 2020. To manage this kind of peak surge on a global scale would require that the power grids in every nation on earth be completely rebuilt. A high-speed transmission system that has incredible storage capacity and that can somehow mete out this energy when it is actually needed is an unavoidable necessity.

Germany’s wind turbines are located primarily in the windy north, near the Baltic Sea. But Germany’s main industrial region is in the south. To close this geographical gap, the German government proposes initially upgrading the grid with 12,000 additional kilometres of high-speed electric power lines. To put that infrastructure project into perspective, Germany’s current autobahn road network extends to 13,000 kilometres. 

But even if the upgrade took place, it still wouldn’t solve Germany’s surge problem. For, just as in California, the German grid cannot cope with the power surges from the wind and solar farms, which, during these surges, are often shut down as a precaution. 

Granted, if the surges could be stored in some way, this would be a big step toward addressing the unreliability of renewables. Unfortunately, sufficient storage is impossible with current technology, especially given current lack of available resources. Thus, without a significant increase in nuclear power generation, the proposed world of reliable renewable energy is a ridiculous pipe dream. 

Batteries cannot resolve the storage problem. They are exorbitantly costly. And, even though Lithium-ion grid solutions (LIB) can store energy safely for short periods, the fact is, the greater the required storage capacity, the less efficient and more problematic battery storage becomes. So, not only would reliance on battery storage increase consumer prices even further, but it’s unlikely that LIB systems will be physically capable of meeting variable demand on anything approaching the required scale. 

The Disposable Waste Problem

The third problem is the disposal of waste from renewables: Much of the waste isn’t actually “renewable.” So-called renewables produce 300 times more waste than a comparable nuclear plant in order to generate the same amount of energy. Moreover, renewables require more than 400 times as much land as nuclear plants do to achieve the equivalent output.

With a 20-to-30-year lifespan, many of the solar panels that were first installed in the early 2000s now need to be destroyed. Dedicated solar panel recycling plants can extract the valuable elements, such as the silver and copper they contain, but most of the material is burned in cement ovens. This is an incredibly energy intensive process. Additional energy will be required to incinerate the estimated 78 million metric tonnes of solar panels by 2050.

Solar panels cannot be safely discarded in landfills, as they contain dangerous levels of lead, cadmium, and other toxic chemicals. In order to avoid the high cost of disposing of them properly, low-performing, second-hand panels are currently shipped off to developing nations where they can provide extremely limited energy for a couple of remaining years, before being discarded into hazardous landfills.

The IEA estimates that we will need to dispose of 78M metric tonnes of solar panels by 2050. 

The Insufficient Resources Problem 

As if all these problems weren’t insurmountable enough, there is yet a far more significant obstacle to overcome. Namely this: As far as anyone knows, there are nowhere near enough resources on the planet to construct the proposed “sustainable” energy infrastructure. 

Germany proposes the hydrogen-driven conversion of biofuels for its future transport and road haulage network. The German government appears to realise there aren’t enough resources to run a German EV fleet, let alone meet all its other “energy transition” demands. Whether charged by “renewable energy” or not, EVs are not a realistic transport option. 

By contrast, the UK government, which  became the first government in the world to commit to a “net zero” policy on greenhouse gas emissions (GHG) in mid 2019, has announced a ban on the sale of petrol and diesel cars by 2030 and a switch to a 100% EV fleet.

Assessing the feasibility of this policy, Professor Richard Herrington authored a letter to the UK parliamentary Committee on Climate Change (CCC) that outlined the resources necessary to convert just the UK’s existing car and road haulage fleet to EVs.

Herrington’s team of research scientists calculated the rare earth metals and other metals plus the further resources and energy requirements that would have to be secured to implement the UK government’s plan to make all cars and vans EVs by 2050, with all new car and van sales to solely be EVs by 2035:

To replace all UK-based vehicles today with electric vehicles [. . .] would take [. . .] just under two times the total annual world cobalt production, nearly the entire world production of neodymium, three quarters the world’s lithium production and 12% of the world’s copper production. [. . .] [It] will require the UK to annually import the equivalent of the entire annual cobalt needs of European industry. [. . .] If this analysis is extrapolated to the currently projected estimate of two billion cars worldwide [. . .] annual production would have to increase for neodymium and dysprosium by 70%, whilst cobalt output would need to increase at least three and a half times. [. . .] The energy demand for extracting and processing the metals is almost 4 times the total annual UK electrical output. [. . .] There are serious implications for the electrical power generation in the UK needed to recharge these vehicles. Using figures published for current EVs [. . .] this will demand a 20% increase in UK generated electricity.

Herrington’s calculations specifically took no account of the additional energy required to manufacture the solar panels and the wind and hydroelectric turbines that would be needed to generate the necessary additional 20% of total UK energy production simply to charge the UK’s proposed fleet of EVs.

Bear in mind, we have discussed thus far only the resources and the increased electricity generation needed for an EV fleet in the UK. We haven’t even touched upon the impossibility of replacing the world’s current transport and commercial road haulage requirements with EVs, let alone meet future energy demands in every other sector of the global economy. 

When US scientists conducted a critical review of global decarbonization scenarios to ascertain the feasibility of achieving SDG7, they looked beyond the transformation of transport and included the total demand for energy needed for every other aspect of our lives. Their conclusion:

[A]ll of the scenarios examined envision historically unprecedented improvements in the energy intensity of the global economy[.] [. . .] Achieving these rates would require a significant and discontinuous acceleration of worldwide energy efficiency efforts. [. . .] To accomplish deep decarbonization with this limited portfolio, [. . .] studies depend on sustaining global energy intensity improvements for decades at a rate twice as fast as the most rapid energy intensity improvement experienced in any single year in recent history and roughly 3.5 times faster than the average global rate sustained from 1970 to 2011. [. . .] Given the multiplicity of feasibility challenges associated with [?] simultaneously achieving such rapid rates of energy intensity improvement and low-carbon capacity deployment, it is likely to be both premature and dangerously risky to ‘bet the planet’ on a narrow portfolio of favored low-carbon energy technologies.


If the planet genuinely commits to this proposed SDG7 energy transformation, the energy intensity and density problem inherent in renewables means that humanity will need to generate more energy, by orders of magnitude, on a global scale. 

Absent a massive increase in nuclear power generation, some form of reliable “energy-dense” renewable power technology that is yet to be discovered appears to be absolutely essential.

It is sheer fantasy—if not utter madness—to imagine that the world currently possesses either the technology or the resources to generate the energy it needs from “renewable energy sources.” Yet governments around the world are hell-bent upon implementing this apparently suicidal mission.

The German policy pledge to base 80% of its power generation on renewable energy would seem totally absurd were it not for the EU’s hasty reclassification of what “green energy” means. The EU Parliament has now decided that nuclear power and gas-fired power stations are “green.”

They had no choice but to compromise. Surely they realized that powering a continent like Europe with so-called “renewable energy” is totally unrealistic. It is expensive, environmentally damaging, and unsuited to our power requirements.

Despite these hard facts, the rhetoric must say otherwise, for national governments and intergovernmental bodies never dare tell the truth about what they are really up to. Hence, the EU’s REPowerEU policy announcement falsely claims:

Renewables are the cheapest and cleanest energy available, and can be generated domestically, reducing our need for energy imports. The Commission is proposing to increase the EU’s 2030 target for renewables from the current 40% to 45%. [. . .] The EU Solar Energy Strategy will boost the roll-out of photovoltaic energy [. . .] [a]s part of the REPowerEU plan. [. . .] Replacing coal, oil and gas in industrial processes will help cut the dependency on Russian fossil fuels, while transitioning to cleaner energy sources, strengthening industrial competitiveness and supporting international technology leadership.

This is beyond gibberish. The EU is exploiting the war in Ukraine to sell preposterous energy policies. It is a duplicitous and life-threatening deceit. The risk factors for excess winter mortality in Europe could not be clearer:

Cross country variations in mean winter environmental temperature, [. . .] mean winter relative humidity, [. . . ] rates of income poverty, [. . . ] inequality, [. . .] deprivation [. . .] and rates of fuel poverty [. . .] are found to be significantly related to variations in relative excess winter mortality. [. . .] High seasonal mortality in southern and western Europe could be reduced through improved protection from the cold indoors.

Prior to the sanctions, Germany imported 33% of its oil, 45% percent of its coal and 55% percent of its gas from Russia. While much has been made of Germany’s occasional ability to generate 60% or more of its energy from renewables, that ability is entirely reliant upon load demand and weather conditions. At other times, renewable energy plummets to below 16%. In any event, most of the renewable energy is lost because the grid can’t handle it.

Translation: The cost of the energy transition. Expected investments in new power plant storage and electricity network until 2031 (in billion euros). Source

Policy platforms like REPowerEU and Energiewende, combined with the EU’s ongoing sanctions regime, will increase the mortality risk for the poorest and most vulnerable Europeans. Yet no one seems to care about this. 

The Duplicitous Global Carbon Market

We are told that the whole point of “sustainable development” is to mitigate the problems that will supposedly be caused by humanity’s GHG emissions. This fairy tale has left most people labouring under the illusion that SDG7 energy transition, and the variations on the associated “net zero” policy commitment, such as the European Union’s REPowerEU and the German government’s Energiewende, will therefore reduce CO2 emissions. 

That assumption is wrong.

Target 7.2 of SDG7 commits the world to substantially increase the use of renewable energy in the global “energy mix.” It has two big strikes against it. For one, it ignores the monumental risks involved. For another, it does not say nor even imply that developed nations or multinational energy corporations—the so-called “big polluters”—need to necessarily reduce their GHG emissions.

To understand the subject, we need to return momentarily to Article 12 of the Kyoto Protocol, which was adopted in 1997 and which established three “flexible” international carbon trading and offsetting mechanisms: Emission Trading, the Clean Development Mechanism (CDM) and Joint Implementation (JI).

Emission trading created a new type of tradable commodity, measured in metric tonnes of CO2 removal (or “sequestration”). It effectively established the carbon trading market. According to Investopedia:

Carbon trade is the buying and selling of credits that permit a company or other entity to emit a certain amount of carbon dioxide or other greenhouse gases. The carbon credits and the carbon trade are authorized by governments with the goal of gradually reducing overall carbon emissions and mitigating their contribution to climate change. Carbon trading is also referred to as carbon emissions trading.

If you believe in the climate crisis and the assumed need to reduce global CO2 emissions, this all sounds reasonable. Reasonable, that is, until you discover how this global market operates. 

The UN believes, in keeping with its Framework Convention on Climate Change (UNFCCC), that there is no need for developed nations to reduce their carbon emissions to meet SDGs:

These mechanisms [Emission Trading, the CDM & the JI] ideally encourage GHG abatement to start where it is most cost-effective, for example, in the developing world. It does not matter where emissions are reduced, as long as they are removed from the atmosphere. This has the parallel benefits of stimulating green investment in developing countries and including the private sector in this endeavour to cut and hold steady GHG emissions at a safe level. It also makes leap-frogging—that is, the possibility of skipping the use of older, dirtier technology for newer, cleaner infrastructure and systems, with obvious longer-term benefits—more economical.

In 2018, Carbon Market Watch (CMW) released a report which highlighted what “sustainable development” meant for people living in developing nations as they leapfrogged over a safe and reliable energy supply:

In Uganda, a private company blocked access to land vital for the livelihoods of local communities in order to claim credits for planting forests in that area. In India, a waste incinerator project diverted w

Share This Article...


Ad Blocking software disables some of the functionality of our website, including our comments section for some browsers.

Powered by FundRazr
Gab Social Gettr Twitter Youtube Facebook RSS

BlackListed News 2006-2023
Privacy Policy
Terms of Service